Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Zool ; 20(1): 27, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587452

RESUMEN

BACKGROUND: Despite centuries of research, debate remains on the scaling of metabolic rate to mass especially for intraspecific cases. The high variation of body mass within brown bears presents a unique opportunity to study the intraspecific effects of body mass on physiological variables. The amplitude of metabolic rate reduction in hibernators is dependent on body mass of the species. Small hibernators have high metabolic rates when euthermic but experience a drastic decrease in body temperature during torpor, which is necessary to reach a very low metabolic rate. Conversely, large hibernators, such as the brown bear (Ursus arctos), show a moderate decrease in temperature during hibernation, thought to be related to the bear's large size. We studied body mass, abdominal body temperature, heart rate, and accelerometer-derived activity from 63 free-ranging brown bears (1-15 years old, 15-233 kg). We tested for relationships between body mass and body temperature, heart rate, and hibernation duration. RESULTS: The smallest individuals maintained lower body temperatures during hibernation, hibernated longer, and ended hibernation later than large bears. Unlike body temperature, winter heart rates were not associated with body mass. In summer, the opposite pattern was found, with smaller individuals having higher body temperature and daytime heart rates. Body mass was associated with body temperature in the winter hypometabolic state, even in a large hibernating mammal. Smaller bears, which are known to have higher thermal conductance, reached lower body temperatures during hibernation. During summer, smaller bears had higher body temperatures and daytime heart rates, a phenomenon not previously documented within a single mammalian species. CONCLUSION: We conclude that the smallest bears hibernated more deeply and longer than large bears, likely from a combined effect of basic thermodynamics, the higher need for energy savings, and a lower cost of warming up a smaller body.

2.
Science ; 380(6641): 178-187, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37053338

RESUMEN

Venous thromboembolism (VTE) comprising deep venous thrombosis and pulmonary embolism is a major cause of morbidity and mortality. Short-term immobility-related conditions are a major risk factor for the development of VTE. Paradoxically, long-term immobilized free-ranging hibernating brown bears and paralyzed spinal cord injury (SCI) patients are protected from VTE. We aimed to identify mechanisms of immobility-associated VTE protection in a cross-species approach. Mass spectrometry-based proteomics revealed an antithrombotic signature in platelets of hibernating brown bears with heat shock protein 47 (HSP47) as the most substantially reduced protein. HSP47 down-regulation or ablation attenuated immune cell activation and neutrophil extracellular trap formation, contributing to thromboprotection in bears, SCI patients, and mice. This cross-species conserved platelet signature may give rise to antithrombotic therapeutics and prognostic markers beyond immobility-associated VTE.


Asunto(s)
Plaquetas , Proteínas del Choque Térmico HSP47 , Hipocinesia , Traumatismos de la Médula Espinal , Ursidae , Tromboembolia Venosa , Animales , Humanos , Ratones , Fibrinolíticos/uso terapéutico , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/etnología , Embolia Pulmonar/metabolismo , Factores de Riesgo , Traumatismos de la Médula Espinal/complicaciones , Ursidae/metabolismo , Tromboembolia Venosa/etiología , Tromboembolia Venosa/metabolismo , Hipocinesia/complicaciones , Proteínas del Choque Térmico HSP47/metabolismo , Plaquetas/metabolismo
3.
Anim Welf ; 32: e75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38510989

RESUMEN

Animal models are a key component of translational medicine, helping transfer scientific findings into practical applications for human health. A fundamental principle of research ethics involves weighing the benefits of the research to society against the burden imposed on the animals used for scientific purposes. The utilisation of wild animals for research requires evaluation of the effects of capture and invasive sampling. Determining the severity and duration of these interventions on the animal's physiology and behaviour allows for refining study methodology and for excluding or accounting for biased data. In this study, 39 Scandinavian brown bears (Ursus arctos) captured either while hibernating in winter or via helicopter in summer and that underwent surgery as part of a human health project had their movement, body temperature and timing of onset of hibernation compared with those of 14 control bears that had not been captured during the same period. Bears captured in winter and summer showed decreased movement from den exit until late summer, compared to those in the control group. Bears captured in summer showed reduced movement and body temperature for at least, respectively, 14 and 3 days, with an 11% decrease in hourly distance, compared to pre-capture levels, but did not differ in the timing of hibernation onset. We reveal that brown bear behaviour and physiology can be altered in response to capture and surgery for days to months, post-capture. This has broad implications for the conclusions of wildlife studies that rely upon invasive sampling.

4.
Front Physiol ; 13: 785706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600291

RESUMEN

Biological rhythms, such as rhythms in activity and body temperature, are usually highly synchronized and entrained by environmental conditions, such as photoperiod. However, how the expression of these rhythms changes during hibernation, when the perception of environmental cues is limited, has not yet been fully understood for all hibernators, especially in the wild. The brown bear (Ursus arctos) in Scandinavia lives in a highly seasonal environment and adapts to harsh winter conditions by exhibiting hibernation, characterized by reduced metabolism and activity. In this study, we aimed to explore the expression of biological rhythms in activity, body temperature and heart rate of free-ranging brown bears over the annual cycle, including active, hibernation and the transition states around den entry and exit. We found that rhythms in physiology and activity are mostly synchronized and entrained by the light-dark cycle during the bears' active state with predominantly diel and ultradian rhythms for body temperature, activity and heart rate. However, during hibernation, rhythms in body temperature and heart rate were considerably slowed down to infradian rhythms, influenced by the amount of snow in the denning area, whereas rhythms in activity remained diel. Rhythms in the transition states when bears prepared for entering or coming out of hibernation state displayed a combination of infradian and diel rhythms, indicating the preparation of the body for the change in environmental conditions. These results reveal that brown bears adjust their biological rhythms to the seasonal environment they inhabit. Rhythms in physiology and activity show simultaneity during the active state but are partly disconnected from each other during hibernation, when bears are most sheltered from the environment.

5.
Ecol Evol ; 10(15): 8044-8054, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788960

RESUMEN

Hibernation is an adaptive strategy to survive harsh winter conditions and food shortage. The use of well-insulated winter dens helps animals minimize energy loss during hibernation. Brown bears (Ursus arctos) commonly use excavated dens for hibernation. Physical attributes of excavated dens are expected to impact the bear's heat retention and energy conservation. The objective of this study was to examine the determinants of cavity size of excavated dens and the impact of physical attributes of excavated dens on energy conservation in hibernating bears, hypothesizing that bears excavate dens in a way to minimize heat loss and optimize energy conservation during hibernation. We predicted that den cavity size would be determined by the bear's body size and that older bears would excavate better-fitting cavities to minimize heat loss, due to their previous experience. We further predicted that physical attributes of excavated dens would affect the bears' posthibernation body condition. Our results revealed that bears excavated a den cavity in relation to their body size, regardless of sex, and that older bears tended to excavate better-fitting den cavities compared to young bears, as we expected. Older bears excavated better-fitting den cavities, suggesting a potentially experience-based shift with age in den-excavation behavior and an optimum cavity size relative to a bear's body size. Our key finding is that insulation of excavated dens provided by wall/rood thickness and bedding materials had a significant positive effect on bears' posthibernation body condition. We believe that our study provides new insight into how not only the quality of denning habitat, but also the quality of dens may affect hibernating animals, by presenting a potential adaptive aspect of den preparation (age effect on efficiency in den excavation) and effect of den attributes on the posthibernation body condition of brown bears.

6.
Nat Ecol Evol ; 2(1): 116-123, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29230025

RESUMEN

Management of large carnivores is among the most controversial topics in natural resource administration. Regulated hunting is a centrepiece of many carnivore management programmes and, although a number of hunting effects on population dynamics, body-size distributions and life history in other wildlife have been observed, its effects on life history and demography of large carnivores remain poorly documented. We report results from a 30-year study of brown bears (Ursus arctos) analysed using an integrated hierarchical approach. Our study revealed that regulated hunting has severely disrupted the interplay between age-specific survival and environmental factors, altered the consequences of reproductive strategies, and changed reproductive values and life expectancy in a population of the world's largest terrestrial carnivore. Protection and sustainable management have led to numerical recovery of several populations of large carnivores, but managers and policymakers should be aware of the extent to which regulated hunting may be influencing vital rates, thereby reshaping the life history of apex predators.


Asunto(s)
Conservación de los Recursos Naturales , Rasgos de la Historia de Vida , Longevidad , Reproducción , Ursidae/fisiología , Animales , Femenino , Masculino , Dinámica Poblacional , Suecia
7.
Conserv Physiol ; 4(1): cow061, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990289

RESUMEN

Human disturbance can affect animal life history and even population dynamics. However, the consequences of these disturbances are difficult to measure. This is especially true for hibernating animals, which are highly vulnerable to disturbance, because hibernation is a process of major physiological changes, involving conservation of energy during a resource-depleted time of year. During the winters of 2011-15, we captured 15 subadult brown bears (Ursus arctos) and recorded their body temperatures (n = 11) and heart rates (n = 10) before, during and after capture using biologgers. We estimated the time for body temperature and heart rate to normalize after the capture event. We then evaluated the effect of the captures on the pattern and depth of hibernation and the day of den emergence by comparing the body temperature of captured bears with that of undisturbed subadult bears (n = 11). Both body temperature and heart rate increased during capture and returned to hibernation levels after 15-20 days. We showed that bears required 2-3 weeks to return to hibernation levels after winter captures, suggesting high metabolic costs during this period. There were also indications that the winter captures resulted in delayed den emergence.

8.
J Wildl Manage ; 79(2): 274-287, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25866420

RESUMEN

Encounters between Scandinavian brown bears (Ursus arctos) and humans that result in human injuries and fatalities typically coincide with den entry in October and November, and commonly occur near a den. Our aim was to determine when bears arrive at their dens, identify potential predictors of this event, document behavior and activity associated with this period, and attempt to explain the increased risk of bear-caused human injuries in this period. We analyzed global positioning system (GPS) location and activity data from brown bears in south-central Sweden, using generalized linear mixed models, statistical process control, and activity analyses. Bears arrived at their den sites between 6 October and 1 December. Timing varied by reproductive category, bear age, and year. Half of all bears significantly reduced their activity before arriving at the den area: on average 2,169 m away from the den and 1.8 days before arrival. The other half reduced their activity after arriving at the den area. The latter bears took longer time to reach hibernation activity levels, but we did not find a difference in the start date of hibernation between the 2 groups. Bears also appeared to be sensitive to disturbance in this period, with higher den abandonment rates than later in winter, particularly for males and for bears that had not visited their den sites previously. Den entry occurred from October to December, with high variability and poor predictability of its timing. Therefore, restricting hunting or other recreation activities to reduce risk of injury by bears and disturbing bears probably would be both impractical and ineffective. Our findings can be used to educate hunters about bear behavior at this time of year. Many people associate dens with an increased risk of a bear responding aggressively to disturbance to defend its den, but our results indicate that other behavioral, and possibly physiological, changes in this period also may be involved. © 2014 The Authors. The Journal of Wildlife Management published by The Wildlife Society.

9.
PLoS One ; 9(7): e101410, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988486

RESUMEN

Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human.


Asunto(s)
Reproducción , Ursidae/fisiología , Animales , Temperatura Corporal , Implantación del Embrión , Femenino , Hibernación , Lactancia , Parto , Embarazo , Ursidae/embriología
10.
PLoS One ; 8(9): e72934, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039826

RESUMEN

The brown bear (Ursus arctos) hibernates for 5 to 6 months each winter and during this time ingests no food or water and remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments. Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea, indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer and changes between seasons were positively correlated. Further studies to understand how bears can prevent the development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the treatment of human kidney disease.


Asunto(s)
Hibernación/fisiología , Estaciones del Año , Ursidae/metabolismo , Adaptación Biológica , Adulto , Anciano , Anciano de 80 o más Años , Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Creatinina/sangre , Creatinina/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Fructosa/sangre , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Urea/sangre , Urea/metabolismo , Ácido Úrico/sangre , Ácido Úrico/metabolismo , Ursidae/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...